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Abstract 

It is shown theoretically that the main regularities of spontaneous non-stationary and 
stationary nucleation on the surface and in the volume of glass are the same. Kinetics of surface 
nucleation are studied in detail as a function of temperature for the polished surface of cordierite 
glass. Nucleation occurs mainly on surface defects but spontaneous nucleation on a "perfect" 
surface takes place simultaneously. The high surface nucleation rate and the high temperature of 
its maximum Tm(T m > Tg) is caused mainly by the decrease of the energy barrier (I)* for the 
critical nucleus. 

Keywords: Cordierite glass; Crystal nucleation kinetics; Non-stationary nucleation; Stationary 
nucleation 

1. Introduction 

Glass crystallization begins usually with the surface. The nature and the kinetics of 
surface nucleation are among the most involved and challenging questions in this field. 
Surface nucleation is associated directly with the structure of surface layer which in its 
turn is related to the bulk structure, to the mode of the surface preparation, to the effect 
of surroundings, and so on. All these factors make the study of surface nucleation fairly 
complicated. Although one of the first detailed papers devoted to this problem came 
out in 1927 [1], our knowledge is quite inadequate, in terms of both experimental data 
and theory. Quantitative research on the surface nucleation rate is very sparse and 
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most has been performed only recently. A comprehensive review of the papers 
published up to 1988 can be found in Ref. [2]. 

Here we are going to present our effort to give a general theoretical description of 
surface nucleation kinetics for glass on the basis of primary principles and also 
correlation of experimental results with theory. 

2. Theory 

The theory can be built analogously to that for volume crystal nucleation E3]. First 
spontaneous crystal nucleation on the flat homogeneous glass surface will be consider- 
ed. The glass and crystals have the same composition. Three cases are possible here. 

(1) Surface crystals do not extend over the glass surface (Fig. la). 
(2) crystals extend partially over the glass surface (Fig. l b). 
(3) crystals extend fully over the glass surface (Fig. lc). 

Crystal growth over the glass surface is possible (Figs. lb and lc) if the glass structural 
units (or their parts, ions, atomic groups) can migrate on the glass surface. 

We suppose that structural units have stoichiometric atomic composition but the 
unit is not a molecule; in general it is a building unit. 

We shall consider below case (1) (Fig. la). Let us introduce the distribution function 
f (g l . . . . .  ga, p, T ,  t) of the number of crystals which have G faces, where gg(i = 1, 2 . . . . .  G) 

is the structural unit number on face i, p is the pressure, T is the temperature, t is the 
time. The shape and the size of the crystal are given if the numbers gi are given. One can 
write for f the following kinetic equation for the change c?f of f because of the 
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Fig. l. Possible dispositions of surface crystal nuclei. The nucleus situated under (a), partially under (b), and 
on (c) the glass surface. 1,2,3 the nucleus faces. 
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accidental joining and detaching of structural units for faces i per time interval ~ t: 

~,t [ I ~ ( g ~ , t ) -  li(g~ + 1,t)] (l) 
i = 1  

l~(g~) = f ( g ,  -- 1 ) f l~ (g , -  l ) s i (g  , --  1)--f(gi)~(g~)s,(g,) (2) 

where fii(gi) is the probability of transition of the structural unit from melt (glass) to 
crystal through face i per time unit and per surface unit, ~(g~) is the similar probability 
for inverse transition from crystal to melt, s i is the area of face i; Ii, fli and ~i depend on 
all g~(i = 1, 2 . . . . .  G) but in (2) only variable g~ is written. The complicated system of 
Eq. (1) can be simplified. In the thermodynamic equilibrium state at T >  T m (T m is the 
melting point) the following equality I i ( g i ) =  lie(gi)= 0 results from the principle of 
a detailed thermodynamic equilibrium. This equality gives the relationship 

, ,  s i ( g  i - -  1) N ( g  i - -  
:~i(gi) = f l i (g l - -  l) - - - -  _ _  1, N ( g i ) -  [~(gi) (3) 

) 

si(gi) N (g i )  

One can suppose that Eq. (3) holds at T <  T m and is valid for non-equilibrium states. 
We assume that/~ for the external face i = 1 of the crystal on the interface is equal to 
zero. Using Eq. (3) one can write 

, ,  l) f (gk 
I i(gi)  = N ( g  i -- 1)fli(g i - 1 ) s , ( g , -  l) . . . . .  - - -  (4) 

Considering I~(gi), f (g~)  as continuous functions of 9~ at high enough magnitudes of 
variables g~ we can substitute the finite differences by differentials. Then we have 

l~(g~) = - N ( g , -  1 ) [4 , (g , -  1)s~(g~ 1) ~ ( f ( g ' )  ) 
cg i  \ N ( g i ) ) o , - 1  

ot tN(g,)) 

d g i ,  dgi  = 1 (5) 

(6) 

Eq. (6) can be considered as a generalisation of Zeldovich equation [4] for vapour 
liquid, liquid vapour phase transformations. It is necessary to know the values/~i(9i) 
and N ( g i )  for solution of Eq. (6). It is natural to suppose that at high magnitudes o f y i  
the values/3i are independent of numbers 9k(k :# i). One can believe that the following 
formula holds for/~ 

1 
[ J ~ = ? r ,  z s = T o i e x P \ k  T j ,  (7) 

where r~ is the mean time of the expectation of the structural unit transition from the 
melt to the crystal nucleus on the nucleus-melt interface for face i; lis the mean size of 
the structural unit. ~ai is the activation free energy of this transition, rol is the value of 
the order of the atomic oscillation period in switching chemical bonds. The value qbai is 
near to the activation free energy O, of the melt viscosity because similar switchings of 
the chemical bonds are needed for the viscous flow [5] and for structural rearrange- 
ments at crystal nucleation. 
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Let us find the equilibrium value fe(gl, g2 . . . . .  go) = N(gp  g2 . . . . .  go) (Je(gi) = N(gi))" 
We can consider the nucleus as a polymeric molecule having g 1, g2 . . . . .  go a toms on its 
faces and containing g = g(gl, g2 . . . . .  go) atoms. The total number  g of structural units 
is a function of numbers  gi which determine the shape and the volume of the nucleus. 
For  simplicity we shall consider below that all nuclei have the same shape. Under  such 
a condit ion we can write 

G 
Si ~ . 2 / 3  U 

s,=~,s, s = Z s , ,  o,= V, s = ~ y  , y = ~  (8) 
i = 1  

where P is the volume per one structural unit ; / is  the mean size of the structural unit; v is 
the nucleus volume, s is the nucleus surface; ~ are parameters  which determine the 
crystal shape; 2 s is the coefficient of the nucleus shape. According to Eq. (8), all values 
can be considered as functions of one variable; g is the total number  of structural units 
in the nucleus. The equilibrium numbers  N(gp  g2 . . . . .  go) = N(g) are only functions of 
g. 

We shall deduce below the formulae for equilibrium nuclei numbers  Ns(g) on the 
glass surface and in the melt (glass) volume Nv(g). The free energy of the system 
• (N 1 . . . . .  Ns(g) . . . . .  Nv(g) . . . .  ; p, T) at a given pressure p and temperature T is a func- 
tion of N 1, the number  of monomer ic  structural units in the melt, and of 
• .. Ns(g), Nv(g).-., the numbers  of surface nuclei N~(g) and volume nuclei N~(g) contain- 
ing g structural units (,q > 2). In the equilibrium state qb achieves a min imum value, i.e. 

NI + Z ~ O N s ( g ) + ~ O N v ( g )  = 0  (9) 
g_>2 , • 

where a N  1, 6 N~(y), 6 Nv(g) are the arbitrary variations of N 1, N~(#), Nv(g) which obey 
the condit ion of conservation of the total number  N o of structural units in the system 

N O = N,  + ~ g[N~(g) + Xv(g) ] = const 
g > 2  

6 N o = F N  ~ + ~ g[6N~(g)+6Nv(g)]  = 0  (10) 
g > 2  

Taking the arbitrariness of 3Ns, 3 N  v into account  we obtain from Eqs. (9) and (10) 

c c ~ ~ ~ (11) 
g~x =]As(./), g/~l =/~v(g), ]~/1-- ~cX 1, /~(g)-~?N~(g)'  tl" CNv(g) 

where /q ,  #~(g), p~(g) are the chemical potentials of the structural unit in the melt (#~) 
and of the crystal nuclei on the surface (#~(g)) and in the volume (p~(g)). 

We can write the following relationships 

lq = lqo + k Tin(?,, c 1), S (g )  = P~o(g) + k Tin  [7~(g)c~(g)], 
(12) 

~(g)  = p~(g) + k T[?v(g)c~(g)], ~o(g) = gl']o 

where #1o is the chemical potential of the structural unit in the melt when its 
concentrat ion c~ is equal to " • ~ " umty,/txo is the chemical potential of the structural unit in 
the crystal; Cs(g) is the surface concentra t ion of nuclei; Cv(g ) is the volume concentrat ion 
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of nuclei containing g structural units (the nuclei shape on surface and in volume of the 
melt can be different); ?'l, 7s(g), 7v(g) are the activity coefficients. Concentrations c 1, % c v 
are determined by the formulae 

NI~ + N ~  Nv(g ) Ns(g ) 
c l -  F v + F  ~ , Cv(g)= F, ' c~(g)- F~ ' 

Fv= Nlv + ~ Nv(g), Fs= NI~ + Z N~tg) (13) 
g>2 g_>2 

where NI~ and Nlv are the numbers of structural units on the melt surface and in the 
melt volume; F~ is the total number of structural units on the melt surface; Fv is the same 
in the melt volume. 

According to Eq. (12), the interface energy is included in the activity coefficients ),~(g), 
~,,(.q) 

G G 
kTln7s(g)= ~ a~sT(g), kTlng'v(g)= Z a~'s[(g), (14) 

i--1 i 1 

where a 7, a~' are the surface free energies for faces s~, s~. The formation of the external face 
(i = 1) of a nucleus gives rise to the following change in the system free energy 

Aa = a l c -  o-lg = o- ~ Crg (15) 

where  0-1g ~ O'g is the interface energy of the melt (glass) external medium (atmos- 
phere) interface; o-lc ~ o- c is the free energy of the crystal (i = 1) the external medium 
interface. 

The formula for lL~(g), Eq. (12), is written for the surface layer of the melt. The 
thickness of this layer is equal to the mean size of the structural unit [ We suppose that 
the external face of every surface nucleus belongs to this layer. The centre of the external 
face of a nucleus can be placed at any surface structural unit. Therefore, for the surface 
combinatoric entropy S we can write the usual formula 

F~! 
S = k l n W , ,  W,= (16) 

NI~!N~(2)! ...Ns(g)! 

We consider in Eq. (16) that the surface nucleus cannot plunge into the volume 
without a change of its energy but its energy does not depend on its site on the melt 
surface. 

According to Eqs. (11) and (12) we have 

#~(g) = P~(g), c~(g) _ 7,(g) (17) 
c~(g) 7Aq) 

By introducing/~(g),/~(g) from Eq. (12) into Eq. (11) we obtain 

(1'1(21) 0 ~ r  ' ()'1c1) g ~ r  (18) 

The total numbers of nuclei Y'o>2 N~(g), Y~o_>2 Nv(g) are much less than N~s and NI~ in 
Eq. (13), respectively. Hence F~ ~ N~,  F v ~ Nlv, c I ~ 1,71 ~ 1, ()'tCl)o ~ 1 in Eq. (18). 
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Besides we have 

1 1 
Fs~NI~No=~5 , Fv~Nl ~Nov~No=~g, N ~ o = T N  o (19) 

where No. is the total number  of structural  units on the melt  surface. Thus taking 
Eqs. (13) and (19) into account  we obtain  from Eqs. (18) and (14) 

g(~lo - ~ o )  + Y~ o~s~(g) 
N~(g) = No~ exp k T ~ (20) 

i 
--g(#lo I~o) + ~ alsO(g) 

N v ( g ) = N ° e x p  k T  i (21) 

Eqs. (20) and (2 l) were deduced for the the rmodynamic  equil ibrium which takes place 
at T > T m. These formulae are approx imate ly  valid at T < T m for g < g*, g* being the 
critical nucleus size (see below) because subcritical nuclei (g < g*) appear  and d isappear  
just at T >  Tin, and very seldom do they achieve the size g _> g* at T <  T m. 

Under  the condit ions of Eq. (8) we can write Eqs. (1), (2), (5) and (6) in the following 
way 

af(g, t) 
Ot - ~ [Ii(g' t) - li(g + 1, t)] = I(g, t) - l (g + 1, t) (22) 

i = 1  

Ii(g ) = f ( g -  1)p~(g-  1)s~(g-  1)-f(g)ot i (g)s i(g)  (23) 

G 

l(g, t )= ~ li(g, t ) = f ( g -  1) /3(g-  1 ) s ( g -  1 ) - f ( g ) ~ ( g ) s ( g )  (24) 
i = 1  

1 ~ 1 ~ 
fl(g) = s(g) ~ [3'(g)si(g)' o~(g) = ~(~ ~1 ~i(g)si(g)' s(g) = ~ s,(g) (25) 

i = 1  i = i = 1  

~(g)=[~(g_l)s(g 1) N ( g - 1 )  , ~ / f ( g ) ~  
s(g) N ( g ) '  l ( g ) ~ - N ( 9 - 1 ) f l ( g - 1 ) s ( 9 - 1 i @ ~ ) )  

(26) 

(?t - 90 fl(g)N(g)s(g) , (27) 

For  surface nucleation: N(g) = N~(g) (Eq. (20)), for volume nucleation: N(g) = N~(g) 
(Eq. (21)). For  surface nucleat ion it is convenient  to exclude the item Sl in the sum S=~., G ~= ~ si (Eq. (25)) because fl~ = 0 for the external face i = 1. Eq. (27) is quite similar 
to the Zeldovich Frenkel  equat ion [4, 6]. 

Let us consider the simplest model  of the isotropic surface nucleus having two faces 
(Fig. 2a); i = 1 is the nucleus the surrounding med ium interface; i = 2 is the n u c l e u s - -  
the melt  (glass) interface. The  nucleus shape is determined by the force equil ibrium 
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a 6 

c d 

Fig. 2. Isotropic equilibrium surface nuclei: a crystal nucleus, g glass, c crystal, 0 wetting angle, 
crg-~cos0,=o'c; b - l iqu id  nucleus, a~+o'COS0b=a ¢, 0b=~--0a: C critical nucleus r* on particle 
R < r*(a c < ag); d critical nucleus r* on particle R < r*(a c > ~). 

(Fig. 2a) crcos 0 + cro = ag, where  cr is the surface free energy  of the crystal  mel t  (glass) 

in terface  a n d  0 is the wet tab i l i ty  angle:  

7~ 
c o s 0 - a g - a  c _  A a < o ,  0 >  (28) 

cr cr 2 

Act = ac - crg > 0 if the s u r r o u n d i n g  m e d i u m  is the a t m o s p h e r e  or  the v a p o u r  of the 
melt.  

The  nuc leus  shape  presen ts  a s egmen t  of a sphere  hav ing  rad ius  r, while the segment  
height  is h = r(1 cos 0), h > r at  Act > 0 (Fig. 2a). The  nuc leus  v o l u m e  is 

47zr 3 4)(0) (2 - 3cos 0 + cos30) (29) 
v s -  3 , qS(0) = 4 

The  i n c r e m e n t  of the free energy  of the system is (see Eq. (20)) 

G c 

c + = - (30) A @ ( g ) = - g ( ] 2 1 o - ] 2 1 o )  ~ Gis i --l)sAqg+siA6+s2 if, A(O ]21°--]21° 
i = 1  13 

Using  the fo rmulae  for s 1 = 7zr2sin 2 0 a n d  s 2 = 2 = r h  we o b t a i n  [3] 

4 
A ~ ( 9 )  = Aqb(r, 0) = A@v(r)~b(0), qbv(r ) = - -~ rc r3A(p  + 47cr2o " (31) 
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where Aqbv(r ) is the free energy increment due to the nucleus appearance in the volume 
of the melt. According to Eqs. (28) and (31) volume nucleation is energetically prefer- 
able compared with surface nucleation, if A cr > cr and conversely, if Acr < a. The radius 
r = r* corresponding to the critical nucleus can be found from the condition of 
a maximum value of A@(r, 0) 

dAUb 2a 16rcrr 3 
d r  r=r . = 0 '  r*--  A4o' A(I)*=Aq)*q$(0), A@*-3(Aqo) ~ (32) 

The following formula is valid for Am(T) at small I T -  Tml 

A(p=qti--~)  , q= ~OZ/]TmZm=SmZm (33)  

where S m = - (OAq~/c'~ T)r m is the entropy of melting and q is the heat of melting. 
We are coming now to the analysis of Eq. (27) for the model discussed. This equation 

can approximately be solved analogously to that in Ref. [4]. We obtain the approxi- 
mate formula for stationary (Of/O t = 0) nucleation rate/st 

[ 1 ( g 2 A ,  )~1/2 
l~t=N~(g*)D(g*) 2 ~ - T  ~g2 g=o*}-I ' 

D *  • ( A®(y*)) (g )=f12  2(g ), N~(g*)= Nos exp k T J' 

g* = ~- (34) 

S2(g* ) = 2for*Z(1 -- cos 0), 

(35) 

where Aq)(g) is determined by Eq. (30) or (31). 
The period of non-stationary nucleation takes place before the establishment of 

stationary nucleation. There are two approximate formulae proposed by Zeldovich 
[4], Eq. (36), and Kashchiev [7], Eq. (37), for volume nucleation 

Iz(t) = l~t exp( - r/t), (36) 

IK(t )=Is t I l  + 2 ~ (37) 

where z is the characteristic time of non-stationary nucleation. Similar formulae can 
evidently be obtained for surface nucleation. 

We see that the main peculiarities of volume nucleation also occur for surface 
nucleation. The temperature-dependence of Ist, Eq. (34), is determined mainly by the 
exponent e x p [ - ( q b  + Aq)*)/kT], where (ID a is the activation free energy for face 
2 (q~a = q)a2)" The exponent has a maximum at the temperature Tma X 

(~(I) 2 Tmax T m 1 + H./AqJ* H a = (I) a + TS  a, S~ = - (38) 
= 3 1 - + ~ *  r=rm,x' 0 T '  

where Eq. (33) was used for A q~(T); H a and S a can be called the activation enthalpy and 
the activation entropy of structural rearrangement, respectively. Eq. (34) for Is~ = Is.s, is 
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different from that for volume nucleation Iv,s, by the value Ns(g* ) which is calculated 
per surface unit but not per volume unit. Ns(g) (Eq. (20)) is related to the surface layer 
having the volume S1, where S is the surface area. Consequently, we must multiply the 
volume crystal nucleation rate I v by ?-to compare I v with the surface nucleation rate I s. 
The multiplier N O = 1/13 transforms to Nos = No?-= 1/F 2 (Eq. (19)). So the surface 
nucleation rate can be greater than the volume nucleation rate for the following 
reasons. 

(1) The values of the multiplier ~b(0) are small (~b(0) < 1 (Eq. (29))). 
(2) Surface layers can be disordered and strained over a distance of the order of the 

critical nucleus size. Therefore the activation free energy ¢a2 ---- ~a ~ ~ ,  is de- 
creased, the surface viscosity (@,) of the melt or of the glass is also decreased. 
Besides the chemical composition of the glass surface layers can be changed by 
interaction with the surrounding atmosphere. This can also reduce the value of 
A¢(g) + % 

The theory of crystal nucleation on the melt (glass) surface can be applied to the 
inverse process, i.e. to melt nucleation on the crystal surface during the melting process. 
In the latter case (T > Tm) we have from Fig. 2b 

COS0 =O'c  O'g --  Act > 0, 0 < -  (39) 
t7 t7 2 

One observes experimentally the origin of the melt layer on various crystals, 
for example on the quartz surface at very small values T - T  m > 0. This indicates 
that A¢*  =A@*qS(0)--,0, c o s 0 ~ l .  If we compare the results from Eqs.(39) and 
(28), we shall see that they complement one another; the sum of the nuclei volumes 
is the volume of a sphere (Fig. 2a, b). When Aqb* for the melt nucleus tends to 
zero, Aqb* for the crystal nucleus tends to Aq)*. In Ref. [8] the author found that for 
melt nucleation the inequality ac > % + cr takes place whereas for crystal nucleation 
cr c < ag + tr. This contradiction is absent in our consideration where the inequality 
~ro < ag + cr takes place in both cases (Eqs. (28) and (38)) but cos 0 has opposite signs. 

Let us emphasize that the value A~* can be increased by elastic strains arising from 
the difference between the molar volumes glass and of crystal. The elastic energy 
decreases if the nucleus centre is placed on the glass surface [9]. This promotes surface 
crystal nucleation. But it is necessary to take into account the possibility of strain 
relaxation during the appearance of a critical nucleus. It is probable that the relaxation 
process requires a smaller number of chemical bond switchings than nucleus formation 
and the main part  of elastic strains can relax more quickly than the nucleus will be 
formed. 

We have considered above nucleation on the flat surface. The theory can also be 
applied to a curved or distorted surface. Such a surface can be generated by the particles 
of other phases or by bubbles in the glass volume. In this case the interface surface S is 
equal to the sum ZiSi of interfaces Si of the particles of a given chemical nature. The 
nuclei appear  on the surfaces S~ and grow into the glass volume. 
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Let us consider the simplest model  of N R spherical particles with radius R, then 

S = ~S i = NR4rcR 2 (40) 
i 

The particles R play the role of the external medium.  The crystal nucleation rate on 
the surface, Eq. (40), is given by formulae  of the type Eq. (20) and Eqs. (34)-(37). Two 
limiting cases are possible here: 

(1) Particles R are great, R >> r*(T), where r*(T) is the critical radius of a nucleus. 
The  interface is practically flat at the site where the nucleus arises. Consequent ly  
Eqs. (28), (31), (32) and (39) are valid. It is pert inent to emphasize  here that  cr c can 
be less than ag if the external med ium is not  a gaseous medium.  The relat ionship 
a c < O-g is true if the crystalline structure of a particle (parameters  of the crystal 
lattice cell) is near  to that  of a nucleus. In this case cos 0 = (ag - ~rc)/a > 0, the 
nucleus shape is expressed by Fig. 2b (0 < ~r/2). 

(2) Particles R are very small, R < r*(T) (this case is discussed in Refs. [-10] and 
[11]). The crystalline nucleus can fully cover  the particle R (Fig. 2c). Then we 
have 

= _ ~ ( r  .3 -- R3)Aq) + 47~R2(oc - O-g) + A ~ *  4~r*2cr 

Aq3* 4~R3A 47zr'3 = v + ~  cP+4~R2(o-c-o-3) ,  A ~ * - -  ~ - - A c p + 4 ~ r * 2 a .  

(41) 

In order  that  the particles R could be active sites for nucleation, the following 
inequalities must  be fulfilled: 

3(0"3 - -  O'c) (42) 
AO*<ACP*,  O-c<o-g, R <  A(p 

At O-c > O-g small particles can be active sites for nucleat ion in the manner  shown in 
Fig. 2d when a par t  of  the surface of the particle R is an interface between this particle 
and the critical nucleus (similar to Fig. 2a). 

It is also necessary to take into account  that  on every interface the act ivat ion barr ier  
q)a for structural  rear rangements  can be lower. This leads to an increase of the interface 
crystal nucleat ion rate I. 

The model  (Eq. (40)) can be used to illustrate catalyzed volume nucleat ion due to 
surface crystal nucleat ion on N R particles in the glass vo lume V. The  number  d N  of 
particles R on which any nucleus of the matr ix  crystalline phase has arisen during the 
time interval from t to t + d t satisfies the equat ion 

dN = I(t)4~R2(NR - N(t))dt 
(43) 

N(t)=NR {1--exp[- f]I(t')4~R2dt']}, ~t =NR4~zR2l(t)exp[-- f]l(t')4~RZdt' ] 
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If we accept that the surface crystal nucleation rate I(t) is given by Eq. (36) we have in 
Eq. (43) (see also Ref. [-12]) 

e -x z 
r ~ / t ~ - d x l = I s t [ t e x p ( - 7 ) + z E i ( - ~ ) l  f l l ( t ' ) d t ' = I s t [ t e x p ( - 7 ) + r J ~  

(44) 

where Ei is the integral exponent. 
Instead of the value I(t)4gR 2 we can introduce a concept about the activity of 

nucleation site ~(t) (the probability of crystal nucleation on a single active site (AS) per 
unit time). The activity ~(t) is proportional to the surface s i (4~R 2 in Eqs. (43) and (39)) 
of the active site and it is greater, the greater the degree of structural strains and 
distortions which decrease the barriers to structural rearrangements. The substitution 
of Eq. (44) into Eq. (43) gives the following expression 

(45) 

where % is the stationary value of ~(t). 
Eq. (43) can be applied to heterogeneous surface nucleation produced by various 

surface active sites. Such active sites can be caused, for example, by small crystal- 
line or amorphous particles on the glass surface or in surface cracks. These particles 
can react with the glass surface at high temperature and change the local chemical 
glass composition inducing the appearance of new small crystalline particles of new 
phases. 

3. Experimental 

To date the nucleation rate on the glass surface remains scantily explored [ 13]. Up to 
now the kinetics of surface crystal nucleation has been studied in most detail for 
cordierite glass (2 MgO.2A120 3. 5 SiO 2). Crystals of p-cordierite and petalite-like 
X-phase arise on the cordierite glass surface polished by CeO z. The kinetic depend- 
ences of the nucleated crystal number N(t) were obtained by the "development" 
method in the case of X-phase crystals 1-14 16] and by the method based on the analysis 
of crystal size distribution resulting from simultaneous crystal nucleation and crystal 
growth for #-cordierite crystals 1-17]. 

The sigmoid form and the saturation of kinetic curves N(t) (Figs. 3a and 3b, 
curve 1) are typical of non-steady nucleation at the limited number of surface AS. 
However the nature of the AS is different: the level of saturation (N~x) of the X- 
phase crystal number decreases rapidly with temperature owing to thermodeactiva- 
tion of AS x but the one of p-cordierite crystals (Ns,) does not depend on temperature 
and is constant within the reproducibility of the surface state (Fig. 4). The appearance 
of AS x results probably from polishing by CeO z. When the surface is polished 
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Fig. 3. Kinetic dependences N(t) for surface-nucleated crystals of(a) X-phase and (b) #-cordierite. 

by  C r 2 0  3 only /~-cordierite crystals arise on it. It is possible that AS x containing 
CeO 2 can transform or dissolve, reacting with cordierite glass at high temperatures.  
So its activity may decrease at a rate increasing with temperature. In the simple 
case, when the probability/3 of ASx deactivation per unit time does not depend on time 
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and the activity of AS~ ~ = 0 at t < find (see Fig. 3a) and ~ = ~s, at t > find, the following 
equat ion was obtained [15] 

r ~x 
Nx(t ) = N  o ~ { 1 - e x p [ - ( ~ + f l ) ( t - t i . d )  3}, t_>ti, d c z ± p  

(46) 

N '  o = N O exp(--  fltind)' 

where N o is the initial number  of AS x. 
F r o m  the dependences Nx(t, T) the nucleation rate Ixm = (dNx(t)/dt)ma× was obtained 

and the probabil i ty of  s tat ionary nucleation on the single AS x was calculated from 
Eq. (47) [15]. 

/xm (47) 
7x = N o e x p ( _  flfind) 

Instead of saturation, at temperatures from about  870 to 990°C the kinetic depen- 
dences N .  (t) have an inflexion after which the number  of #-cordierite crystals continues 
to grow linearly with a rate Iu = dN./dt (Fig. 3b, curve 2). This part  of the dependence 
corresponds to nucleation at the surface between the above-ment ioned AS,. These 
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crystals can be assumed to nucleate at the "perfect" glass surface free from defects 
catalysing nucleation. This assumption is not contradictory to the theory. It is 
possible also that we are dealing here with nucleation at the other active sites 
(ASI,). In any case there are two types of #-cordierite crystal nucleation. A pure 
heterogeneous part was separated from the total kinetic curves and described with help 
of Eq. (45). 

The values of~ u --- :~st and r were chosen to give a good fit to the experimental kinetic 
curves. It should be noted that to the time when crystals have nucleated at all AS, the 
activity ~(t) does not reach its stationary value C~st. 

The values of I, :~, tin d and r for the X-phase and/~-cordierite crystals are plotted in 
Fig. 5 as a function of temperature. Here are also shown the values of~, and r obtained 
in Ref. [-18] by fitting Eq. (45) for #-cordierite crystal nucleation at fractured glass 
surface. 

According to Fig. 5 the temperatures, corresponding to the maximum nucleation 
rates are quite different not only for the X-phase and/~-cordierite crystals but for the 
/~-cordierite crystals nucleated at AS, and also at the "perfect" surface (or at the AS',). 
The latter point gives also evidence for the existence of two types of/~-cordierite 
nucleation at the polished surface. Similar results were obtained in Ref. [19] for the 
nucleation rate of cristobalite crystals at the atmosphere side of the float glass (Fig. 6). 
The nucleation rates were calculated from the kinetic dependences N(t) exhibiting an 
induction period followed by the linear growth of N at low temperatures and the 
saturation effect at higher temperatures. 

As a rule, a maximum of the bulk homogeneous nucleation rate occurs near the 
glass transition temperature Tg [20]. At the same time the temperatures Tma x of 
the surface nucleation rate maxima greatly exceed Tg~ T13 =819°C (Fig. 5). So 
in the case of nucleation of X-phase at AS x, of #-cordierite at the "perfect" polished 
surface and at AS, and also at the active sites of fractured surface, the value 
A T =  Tmax-Tg is equal to 70, 130°C and exceeds 180 and 230°C, respectively. 
For  cristobalite crystals (Fig. 6) the value of AT is equal to 130°C for low-tempera- 
ture nucleation and is more than 330°C for another type of nucleation at higher 
temperatures. 

One can assume that in the case of soda-lime silica glass studied in Ref. 1-21] the 
maximum of the surface nucleation rate for Na20 .2CaO-3SiO 2 crystals at the 
fire-polished surface is also placed at higher temperatures compared to that of the 
volume nucleation rate (Fig. 7). In Ref. [22] the high temperature of the maximum of 
Na20-2SiO 2 crystal nucleation rate at the platinum melt interface exceeding Tg by 
about 150°C was reported. The high temperatures of BaO.2SiO 2 crystal nucleation at 
the crucible wall were observed in Ref. [23]. In this case the rougher wall surface was 
used, the higher nucleation temperatures were noted. 

The high temperatures Tin, x of surface nucleation rate are most likely associated 
with a decrease in the energy barrier AO* of surface nucleation compared with 
that of the volume homogeneous nucleation. According to Eq. (38), Tma x increases 
with K = Ha/A (~* (Fig. 8). Believing that in the case of homogeneous volume 
nucleation Tma x ~ Tg and using the enthalpy of viscous flow activation instead of 
H a, the estimates of the ratio A = Aq~*/Aq)* needed for the experimentally observed 
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shift A T =  Tma x --Tg were performed. At temperatures of the maxima of surface 
nucleation rates the value A is approximately equal to 0.3, 0.1 and 0.02 for nucleation of 
the X-phase crystals on ASx, of/~-cordierite crystals on the "perfect" glass surface and 
on AS,, respectively. 
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IO 

4. Conclusions 

It is shown theoretically that the main regularities of spontaneous non-stationary 
and stationary crystal nucleation on the surface and in the volume of glass are the same. 

The non-stationary character of crystal nucleation on the glass surface is experimen- 
tally established. 

It is shown that nucleation at different kinds of active surface sites dominates, at the 
same time nucleation on the "perfect" glass surface is also possible. 

The nucleation rates of two crystal phases on the surface of cordierite glass were 
obtained as functions of temperature. Based on our own and literature data, it was 
concluded that, as a rule, the temperature of the surface nucleation rate maximum lies 
at a temperature considerably higher than glass transition temperature. This is because 
of the decrease in the energy barrier of surface nucleation as compared with that of 
volume homogeneous nucleation. 
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